
Middleware Domain
Technical Architecture

SSeepptteemmbbeerr 1155,, 22000022

VVeerrssiioonn 22..00

History of Changes
Date Modification
12/5/2000 Added a new section on XML and SOAP to Components.

In Table 2 Middleware Product Selection Matrix
added IBM WebSphere Host Publisher to Terminal Emulation Products –
Strategic
added STC e*Gate™ to Messaging and Application Integration Products –
Research

11/22/2000 Removed table from page 8 that illustrated several types of messaging

In Table 1 Middleware Standards Selection Matrix, changed OLE DB from
transitional to strategic.

5/21/2002
<NEW>

In Table 2 Middleware Product Selection Matrix removed STC e*Gate™
from product list.

In Table 2 Middleware Product Selection Matrix added Oracle 9iAS
Application as a strategic product.

In Table 2 Middleware Product Selection Matrix changed IBM MQSeries to
preferred messaging middleware. Added JMS as preferred messaging
middleware.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 3 of 27

TTeecchhnniiccaall AArrcchhiitteeccttuurree ffoorr tthhee MMiiddddlleewwaarree DDoommaaiinn
Middleware Technical Architecture 1.0. doc

History of Changes.. 2
Mission Statement... 6
Introduction and Background ... 6

Growth in Middleware...6
General Requirements for Middleware..7
Benefits of Using Middleware ...7

Adaptability ... 7
Flexibility ... 7
Reduced Development Effort ... 8
Reduced Integration Effort ... 8
Increased Return on Investment.. 8

Components ... 8
XML and SOAP ..8

XML Characteristics... 8
SOAP Characteristics.. 9

Messaging-Oriented Middleware (MOM)...10
Transaction Processing Monitors (TPM)...11

TPM Services.. 11
Object Oriented TPM.. 11

Object Request Brokers (ORBs)..12
CORBA ... 12
DCOM/DCOM+/DNA ... 12
J2EE and EJB.. 12

Database Middleware...13
Client to Database Management Server.. 14
Client to Gateway Server .. 14
Application Programming Interfaces (APIs) .. 14

Application/Integration Servers ...14
Application Servers... 15
Integration Servers .. 15

Workflow Support ..16
Interactions with Other Domains .. 16
Middleware Domain Principles ... 17

General Domain Principles ..17
Principle 1. Consistency with other architectural principles. 17
Principle 2. Use middleware to support logical partitioning and boundaries. 17
Principle 3. Use mainstream technologies based on industry standards. 17
Principle 4. Use scalable middleware components and products........................... 18
Principle 5. Minimize middleware configurations. .. 18

Component Specific Principles..18
Principle 6. Use MOM and ORB middleware to reduce integration complexity. . 19
Principle 7. Use MOM when connecting to legacy systems.................................. 19
Principle 8. Use database middleware and TPM middleware................................ 20

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 4 of 27

Principle 9. Use asynchronous communications. ... 20
Principle 10. Use MOM when providing connectivity for remote users. 20
Principle 11. Consistency In Naming Conventions.. 21
Principle 12. Reuse Security and Access Control Components. 21

Best Practices Principles ..22
Principle 13. Availability of training and technical support. 22
Principle 14. Document object functionality and public interfaces. 22

Standards... 22
Life Cycle ..23

Obsolete Standards.. 23
Transitional Standards .. 23
Strategic Standards.. 23
Research / Emerging Standards .. 24

Technical Standards ...24
The following standards apply to interfaces and transport mechanisms. 24
Standard 1: Microsoft's ODBC – database access API.. 24
Standard 2: Sun's JDBC – database access API... 24
Standard 3: IBM MQSeries Application Messaging Interface (AMI) – adopted by the
Open Applications Group. .. 24
Standard 4: Microsoft Message Queue (MSMQ) –interface API. 24
Standard 5: EDI (Electronic Data Interchange) – cross platform business data encoding
and formatting, and interchange protocol. .. 24
Standard 6: XML (Extensible Markup Language) – cross platform data encoding and
formatting. 24
Emerging 1: SOAP (Simple Open Access Protocol) – for invoking distributed system
services or making remote procedure calls. .. 24
Emerging 2: UDDI (Universal Discovery Description And Integration) – specifications for
publishing and discover information about web services. .. 24
The following standards apply to Object Based middleware. 25
Standard 7: CORBA's Interface Definition Language (IDL) for defining public interfaces,
and Transaction Services (TS) interface definition. ... 25
Standard 8: OMG Object Transaction Service (OTS) 1.1 –interfaces and protocol
specifications for CORBA based transaction services.. 25
Standard 9: RMI (Remote Method Invocation) – enables one Java application to access
the objects and methods of another Java application.. 25
Standard 10:RMI over IIOP (Remote Method Invocation over Internet Inter-ORB
Protocol) – enables one Java application to access the objects and methods of another Java
or CORBA program across the Internet.. 25
Standard 11: ..JTS (Java Transaction Service) –25
Standard 12:Sun Microsystems J2EE and EJB – overall architecture for APIs, protocols
and server-side s Java components such as Java Beans or Enterprise Java Beans (EJBs)
encapsulating application logic... 25
Standard 13:Microsoft DNA/DCOM+ – overall architecture for APIs, protocols and
server-side components using Microsoft’s WIN NT, WIN2K based operating environments.
This standard subsumes OLE DB. .. 25

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 5 of 27

Emerging 3: Java Message Service (JMS) API – common API and provider framework for
, asynchronous communication between components in a distributed computing
environment. 25
Emerging 4: JDOM (Java Document Object Model) – creates a new set of Java classes and
interfaces for manipulating XML documents; it is optimized for Java. 25
Emerging 5: Microsoft •NET – programming model for creating XML-based Web Services
and core, •NET building block services. (This proprietary environment is due out in
the 2002 time frame.) .. 25

Middleware Product Standards ..25

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 6 of 27

Mission Statement
Middleware architecture and products facilitate and simplify communication within and
between services, application systems and components, whether distributed or not, or running
on heterogeneous platforms (or not). The focus of this report is limited to application
communication middleware and to data access middleware. It does not deal with network
specific middleware or workflow middleware. These are covered in the Network Domain and
Collaborative / Directory Services Domain architecture documents respectively.

Introduction and Background
As the state moves toward a more adaptable and open infrastructure, multiple applications must
be able to exchange data across complex, heterogeneous environments. Therefore, the state’s
technical infrastructure must be able to deliver pertinent information at the right place and time
and in a useful format. Middleware facilitates interchange of information in a distributed,
multi-vendor, and heterogeneous systems environment while providing the same levels of
security, reliability, and manageability traditionally associated with a monolithic, mainframe-
based architecture where all products are supplied by a single vendor.

Middleware is software that supports communications between the functional tiers of an
application, between two or more different applications, and between applications and shared
services. The role of middleware is to insulate application developers from having to
understand the complexities of the networking and computing environments and to prevent
them from having direct interfacing to platform, network and data layers. Middleware also
provides an environment in which to implement business rules (logic) and workflow rules.

Growth in Middleware
Middleware products are an evolving technology encompassing a wide range of capabilities
from database access to very sophisticated integration engines known as message brokers.
Much of the increased demand for middleware is due to several factors:

• The growth of Intra/Internet, data Mart and ERP applications greatly increased the need for
sophisticated networked application architectures and integration of services. In particular these
applications require integration with back-end legacy applications.
• Complexity and fragility of distributed platform infrastructure
• Component-based systems allowing applications to be "assembled" from re-usable parts
(components)
• The rapid growth of Java as an object oriented language and now the increased use of XML
(Extensible Markup Language) as the method of choice for cross platform data encoding,
formatting and exchange.
• The intranet/internet explosion is fueling the demand for a new class of "human active"
applications that require integration with back-end legacy applications;
• Message Oriented Middleware (MOM) products, are becoming increasingly popular. Once
customers realize the benefits of simple one-to-one application connectivity with MOM, their
interest in many-to-many application integration increases significantly.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 7 of 27

• Recognition that a middleware solution needs to provide a rules-based engine that will
manage the interface dialogues and control the workflow based on established business rules
(and by implication the contents of the messages).
• Recognition that middleware products offer solutions to:
- Intra-application - Handles communication within the tiers of an application system.
- Inter-application - Handles communication between the application system and external

services, such as common shared services and other application systems.
- Database Interface – Handles communication between application systems, or tiers, and

database systems.

General Requirements for Middleware
• have a high level of reliability
• unpack or translate any data from whatever form it is delivered
• receive data from senders in the form they wish to send it in, using their preferred
communication route
• determine, for any message, how to route it
• prevent sending specific types of data to receivers
• address the requirements of the organization in handling unavailable or error conditions
encountered reformat and repackage data into forms intelligible to the intended receiver
• send data to the correct recipients in the form they wish to receive it, using their preferred
communication route
• be aware of the availability of individual systems
• provide mechanisms to implement store and forward
• the capability to distribute messages, so that they do not need to be included in every
application

Benefits of Using Middleware
By delivering common, standard solutions to cross-platform communication and related
services, middleware products offer the following benefits.

Adaptability
A very important aspect of middleware is that by providing a common service through a standard
application interface, applications are freed from a specific infrastructure. For example,
applications requiring relational data can access that data from a DB2 database or an Oracle
database just by changing the target DBMS, not the application. The underlying components of
the technical infrastructure (such as operating systems, databases, and hardware platforms) can
be expanded or changed without having to modify the application systems that are supported by
the infrastructure.

Flexibility
The features and capabilities of applications can be modified without changes to the technical
architecture. For the same reasons that the infrastructure can change without impacting the
application, the application is free to change without necessarily impacting the infrastructure.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 8 of 27

Reduced Development Effort
The use of middleware products simplifies the development of N-tier applications by providing
common services for database access, transaction management and application-to-application
communication. The logical partitioning of an N-tiered system and the modularity of
construction using common services offer efficiencies through the specialization of skills and the
reusability of components. These practices will improve the quality of systems and reduce lead
times for their implementation and modification.

Reduced Integration Effort
Standardizing and expanding the capabilities offered through middleware products will allow
purchased applications and services to be more easily integrated. A growing population of
application packages is adopting industry middleware standards allowing these products to inter-
operate.

Increased Return on Investment
• The opportunities for selecting products from different vendors are enhanced by the
integration capabilities offered by middleware; therefore, greater competition will improve price
offerings.
• Middleware can provides additional value-added business facilities such as auditing,
common view of exposure, a single security platform, resource pooling and application
accretion.
• In addition, implementation of good middleware solutions means that applications need to
have only one interface to maintain and QA.

Components

XML and SOAP
Extensible Markup Language (XML) is a meta-markup language that provides a format for
describing structured data. This facilitates more precise declarations of content and more
meaningful search results across multiple platforms. XML has three important characteristics
that will enable a new generation of Web-based data viewing and manipulation applications,
and will enhance inter-and intra-application communications.

Simple Object Access Protocol (SOAP) provides a simple and lightweight mechanism for
exchanging structured and typed information between peers in a decentralized, distributed
environment using XML. SOAP defines a simple mechanism for expressing application
semantics by providing a modular packaging model and encoding mechanisms for encoding
data within modules. This allows SOAP to be used in a large variety of systems ranging from
messaging systems to RPC. Where XML allows very flexible encoding of data, SOAP defines
a narrower set of rules for encoding.

XML Characteristics
XML has three important characteristics that will enable a new generation of Web-based data
viewing and manipulation applications, and will enhance inter-and intra-application
communications.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 9 of 27

XML is extensible
In XML, you can define an unlimited set of tags. While HTML tags can be used to display, a
word in bold or italic, XML provides a framework for tagging structured data. An XML
element can declare its associated data to be a retail price, a sales tax, a book title, the amount
of precipitation, or any other desired data element. As XML tags are widely adopted, there
will be a corresponding ability to search for and manipulate data, regardless of the
applications within which it is found. Once data has been located, it can be delivered over a
communications link and presented in a browser such as Internet Explorer 5 in any number
of ways. Alternatively, the data can be handed off to other applications for further
processing and viewing.
XML uses structural representation of data
XML provides a structural representation of data that has been broadly implemented and is
relatively easy to deploy. XML is a subset of Standard Generalized Markup Language
(SGML) that is optimized for delivery over the Web. XML is defined by the World Wide

Web Consortium (W3C), ensuring that
structured data will be uniform and independent of applications or vendors.
Once the data is on the client desktop, it can be manipulated, edited, and presented in
multiple views, without return trips to the server. Servers can now become more scalable,
due to lower computational and bandwidth loads. In addition, since data is exchanged in the
XML format, it can be easily merged from different sources.
XML is valuable to the Internet, as well as to large corporate Intranet environments because
it provides interoperability using a flexible, open, standards-based format, with new ways of
accessing legacy databases and delivering data to Web clients. Applications can be built
more quickly, are easier to maintain, and can easily provide multiple views on the structured
data.
XML separates data from the presentation and the process
The power and beauty of XML is that it maintains the separation of the user interface from
the structured data. Hypertext Markup Language (HTML) specifies how to display data in a
browser, XML defines the content. For example, in HTML, you use tags to tell the browser
to display data as bold or italic; in XML, you only use tags to describe data, such as city

http://www.w3.org/

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 10 of 27

name, temperature, and barometric pressure. In XML, you use stylesheets such as Extensible
Style Language (XSL) and Cascading Style Sheets (CSS) to present the data in a browser.
XML separates the data from the presentation and the process, enabling you to display and
process the data as you wish by applying different style sheets and applications.
This separation of data from presentation enables the seamless integration of data from
diverse sources. Customer Information, purchase orders, research results, bill payments,
medical records, catalog data, and other information can be converted to XML on the middle
tier, allowing data to be exchanged online as easily as HTML pages display data today. Data
encoded in XML can then be delivered over the Web to the desktop. No retrofitting is
necessary for legacy information stored in mainframe databases or documents, and because
HTTP is used to deliver XML over the wire, no changes are required for this function.

SOAP Characteristics
SOAP is a lightweight, XML based protocol for exchange of information in a decentralized,
distributed environment. SOAP defines a mechanism to pass commands and parameters
between HTTP clients and servers. SOAP doesn't care what operating system, programming
language, or object model is being used on either the server side or the client side: it is utterly
agnostic, except that it needs HTTP as a transport.

SOAP consists of three parts:

• The SOAP “envelope” construct defines an overall framework for expressing what is in
a message, who should deal with it, and whether it is optional or mandatory.

• The SOAP “encoding rules” defines a serialization mechanism that can be used to
exchange instances of application-defined datatypes; and

• The SOAP “RPC representation” defines a convention that can be used to represent
remote procedure calls and responses.

In addition, the SOAP specification defines two protocol bindings that describe how a SOAP
message can be carried in HTTP messages either with or without the HTTP Extension
Framework (HTTP is the base protocol for the World Wide Web).

SOAP messages are fundamentally one-way transmissions from a sender to a receiver, but as
illustrated above, SOAP messages are often combined to implement patterns such as
request/response.

SOAP implementations can be optimized to exploit the unique characteristics of particular
network systems. For example, the HTTP protocol binding provides for SOAP response
messages to be delivered as HTTP (HTML) responses, using the same connection as the
inbound request. Regardless of the protocol to which SOAP is bound, messages are routed
along a so-called “message path”, which allows for processing at one or more intermediate
nodes in addition to the ultimate destination.

Note: The combination of XML and SOAP has many parallels to the characteristics of EDI
(Electronic Data Interchange). Like the EDI protocols and standards, XML and SOAP are the
subject of industry wide efforts to bring consistency in definitions and naming conventions.
More information on XML and SOAP can be found at W3C http://www.w3.org/TR/REC-xml,
and at OASIS http://www.oasis-open.org/cover/soap.html.

http://www.w3.org/TR/REC-xml
http://www.oasis-open.org/cover/soap.html

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 11 of 27

Messaging-Oriented Middleware (MOM)
Messaging-oriented middleware, or more recently Loosely Coupled Message Passing (LCMP),
provides applications with the ability to send and receive messages across platforms. The
messages contain application-specified information and/or directives meaningful within the
context of the application. The message is queued and made available to one or more target
applications. One architecture for MOM is based on the "publish” (send) and "subscribe”
(receive) paradigm. The leading MOM products are IBM’s MQSeries and MS Message
Queue.

Most MOM products include the following basic services for peer-to-peer communication:

• queuing messages in a permanent cache managed by the product
• guaranteeing the delivery of a message; guaranteed delivery eliminates complicated
application logic ensuring that messages are received and processed.
• synchronous and asynchronous processing of messages. Asynchronous processing of queued
messages frees the sender from waiting for a response. Synchronous processing requires the
sender to suspend execution until results are sent back from the server.

Transaction Processing Monitors (TPM)
Transaction Processing Monitors (TPM) are middleware products servicing clients requiring
transaction services in an n-Tier distributed application environment. TPM middleware
products are important when applications require high transaction volumes, load balancing,
failure recovery and fail-over capabilities.

TPM Services
Transaction Processing Monitors provide the following core services:

Transaction Integrity
Necessary services to ensure those atomic database transactions comprising a business
transaction are applied successfully or not at all. If any one transaction fails, all transactions
contained in the unit of work must be rolled back to return the database to its "before" state.
If all succeed, all are committed to the database(s).
Two-Phase Commit
A means of implementing transaction integrity when there is more than one target database
system (server) involved in the transaction. Two-phase commit ensures that all servers have
successfully posted the transactions targeted at their database before committing these to the
databases involved in the unit of work.
Failure Recovery
Failure Recovery provides means for reestablishing the appropriate connections and
restarting transactions when network and platform outages occur.
Load Balancing
A feature of Transaction Monitors in which the server component manages the workload
presented by the clients by fully utilizing the resources available. Transaction Monitors

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 12 of 27

generally utilize transaction priorities and multiple database sessions and/or threads to
optimize throughput.

Object Oriented TPM
Microsoft Transaction Server and Sun's Java Transaction Service have extended their ORB
middleware solutions to support Transaction Services. These become an alternative
approach to providing an object based transaction monitor capability.
Microsoft Transaction Server
Microsoft® Transaction Server is a component-based transaction processing system for the
development and deployment of server-centric applications built using Microsoft Component
Object Model (COM) technologies.
Java Transaction Service
JavaTM Transaction Service (JTS) specifies the implementation of a Transaction Manager
which supports the Java Transaction API (JTA) specification and implements the Java
mapping of the OMG Object Transaction Service (OTS) 1.1 specification. JTS uses the
standard CORBA ORB/TS interfaces and Internet Inter-ORB Protocol (IIOP) for transaction
context propagation between JTS Transaction Managers.
A JTS Transaction Manager provides transaction services to the parties involved in
distributed transactions: the application server, the resource manager, the standalone
transactional application, and the Communication Resource Manager (OMG CRM).

Object Request Brokers (ORBs)
Object Request Brokers provide the means for communicating between application objects
(components) residing on different platforms. The OMG is a consortium of vendors and
Corporations whose goal is to establish an industry-wide standard for object-to-object
interoperability (OMG - www.omg.org)
The OMG defines the Object Request Broker (ORB) as: "an application framework providing
interoperability between objects, built in (possibly) different languages, running on (possibly)
different machines in heterogeneous distributed environments."

CORBA
CORBA (Common Object Request Broker Architecture) is an industry standard specification
for communicating between distributed objects. The CORBA specification defines the OMG's
Object Management Architecture, ORB facilities, interfaces, and supplementary services.

IIOP (Internet Inter-ORB Protocol) is the Web protocol developed by the OMG to implement
CORBA solutions over the World Wide Web. IIOP enables browsers and servers to exchange
integers, arrays, and objects that are more complex. (Standard HTML only supports transmission
of text. XML (see above) is an extension to HTML that supports database access). Recently the
JAVA community released a specification for RMI over IIOP, allowing SUN’s RMI to access
non-Java objects.

DCOM/DCOM+/DNA
DCOM+ and DNA represent Microsoft's middleware products for distributed components.
DCOM offers similar capabilities to the CORBA specification, but differs from CORBA in the

http://www.omg.org/

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 13 of 27

way the connection between the application components is established and managed. DCOM+
defines the specifications and APIs for server side applets and objects. DCOM+/DNA is
available only on Windows platforms (DNA specifically on Windows 2000). It does not
support inter-operability between different CORBA objects; it only supports co-existence of
CORBA and DCOM models.

J2EE and EJB
Sun’s Microsystems Java 2 Platform Enterprise Edition (J2EE) is a middleware specification
intended to be implemented on “platform independent” Java Virtual Machines. EJB is the
standard specification and APIs for server side applets and components. Key components of
J2EE include RMI (below), JDBC and JTS. EJB interfaces well with IBM CICS, BEA Tuxedo,
and ERP products such as SAP and PeopleSoft.

RMI
Remote Method Invocation, is a set of protocols being developed by Sun's JavaSoft division
that enables Java objects to communicate remotely with other Java objects. It is a true
distributed computing application interface for Java. RMI is a relatively simple protocol that,
currently, works only with Java objects. (unlike more complex protocols such as CORBA
and DCOM)
Java RMI is comprised of three layers that support the interface (see illustration). When
combined with the Java's Native Method Interface, RMI can connect to existing and legacy
systems. RMI uses the Java Remote Method Protocol (JRMP) for interactions between
distributed objects.

[Web reference material: http://java.sun.com/marketing/collateral/javarmi.html]

Database Middleware
Database middleware is the most prevalent form of middleware. It provides applications with
the ability to access data stored in heterogeneous databases regardless of database management
system and platform. The server-based middleware component, be it the DBMS server or
Gateway server, is responsible for mapping the SQL requests to the DBMS-specific SQL,
interfacing to the DBMS system and marshalling the result sets for transmission back to the

responsible for managing the remote
object interface between the client and
server

responsible for managing the "liveliness" of
the remote objects and communication
between the client/server and virtual
machines

actual network/communication layer that
is used to send the information between
the client and server over TCP/IP

http://java.sun.com/marketing/collateral/javarmi.html

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 14 of 27

requestor. This includes data type conversions, caching of result sets, and packaging for
transmittal.

There are two forms of database middleware product: client to DBMS server and client to
gateway server. Both of these use a client-side driver to facilitate cross-platform
communication to the server. Applications interface to the driver via an Application
Programming Interface (API).

Client to Database Management Server

Oracle
NET8 (called SQL*NET prior to Oracle8) is Oracle's client/server middleware product that
offers transparent connection from client tools to the database, or from one database to
another. SQL*NET / Net8 works across multiple network protocols and operating systems.
SQL*NET is a session level protocol under the OSI network model, to be present and
properly functioning on both the client and the server.

Client to Gateway Server
Gateways provide bridging to multiple database management servers. Gateway's offer
additional services and can be a way to manage DBMS workload. The features offered are
often vendor-specific rather than standards-based such as the Sybase MDI product's Remote
Stored Procedure (RSP), a form of Remote Procedure Call (RPC).

Application Programming Interfaces (APIs)

Industry Standard APIs
Microsoft's ODBC, provides a common API regardless of DBMS allowing easier migration
and integration to various DBMS products. Two additional interfaces are JDBC for Java
applications and OLE DB for Microsoft client applications.

Application/Integration Servers
The newest forms of middleware provides for the processing of business logic (application
servers) and message based integration between applications (integration servers). The

Back-End
Applications

Browser

Integration
Server

Application
Server

Web
Server

Internet

DBMS

Firewall

DBMS

DBMS

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 15 of 27

distinction between application server and integration server is not always clear depending on the
specific product offerings. This distinction will continue to be blurred over the next few years.

Application Servers
As access to business applications becomes more pervasive, it will drive responsive, adaptable
client solutions. This will place additional demands on application servers to integrate content
and produce multiple user interfaces based on common business logic. This will include the
need to provide basic enterprise application integration and inter-enterprise integration facilities,
along with workflow and a common user interface portal framework.
An essential facility provided by application serves is the execution of applications, (e.g.,
applets, components and objects) required to process business rules and actions, while insuring
transactional integrity in a heterogeneous environment. To do so requires well designed
application-programming interfaces (APIs) that are stable over time, present high-level
abstraction of the services, and hide the details of the implementation. This in turn leads to a
durable infrastructure that can be reused or expanded. A critical component of application
execution will be workflow related, as this is the best way to capture the business model in
executable form.
Another essential facility provided by application servers is the means for integrating existing
data and applications or components (see Integration Servers below). Applications servers can
provide the facilities that enable legacy and packaged applications to interact with each other,
new Internet applications, and business partners. Application servers also offer functionality for
supporting for naming and location, security, and higher messaging performance. The emerging
XML standards (SOAP, ebXML, XML Schema) and UDDI initiatives will eventually provide
the interoperability the various tools and servers will need to accomplish the integration and
presentation tasks outline above

Integration Servers
Integration Servers are the latest generation of message brokers, which in turn evolved from
data Mart transformation engines. This evolution allowed for the inclusion of other types of
applications, such as those related to integrating ERP applications with other corporate systems.

An integration server is a software hub that records and manages the exchange of information
between applications. The services provided by integration servers include data mapping, data
transformations, event posting, process triggers and other means of automating data and
process flow. Very often, the architecture employed is a variation of publish (send) and
subscribe (receive). When a business event takes place, an application publishes the messages
corresponding to that business event. The integration server reviews its lists of subscriptions
and activates delivery to each subscriber for that message type. Subscribers receive only the
data to which they subscribe. A message published by one application can be subscribed to by
multiple consumer applications. Similarly, a subscribing application can receive messages
from multiple publishing applications.

An important function of an integration server is to provide a business transaction coordination
function (see Workflow Middleware below). A business transaction is typically made up of
several units of work. Each unit of work must complete in order for the transaction to occur. If
even one unit of work fails, the whole transaction fails, and all completed units of work must

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 16 of 27

then be reversed. These transactions are long running, and they require message-based updates
to multiple databases.

The two most important integration server components are the rules-based engine and the data-
transformation components. These two components work together to reconcile the differences
between applications. Typically, development tools for these components provide a visual
front end. This avoids the need for programming in a procedural language.

• The rules-based engine manages the interface dialogues and controls the workflow of
the message stream. The business rules engine allows you to process messages based
upon the unique requirements of the business and the processing of business activities.
The rules-based engine need to make decisions on information contained in the
messages. For example:
- where to route messages
- how to the identity the service required
- how to manipulate the data
- how to map the service requirement to the software components and systems that

perform the required actions when to maintain synchronous interfaces when the
ultimate service may be asynchronous

- how to provide security and access to services through business rules
- how to control, at the receiving interface, access to services, (e.g. is user allowed to

make a payment of the value or type requested? Is the payment service closed?).
• The data transformation component is used to develop application-specific adapters.

These adapters convert the data formats and applications semantics from the sending
application to the receiving application.

Workflow Support
Middleware is a highly appropriate environment in which to manage workflow
communications. It organizes the communication and exchange of data between the different
applications that could be installed on various operating systems. Middleware also has a
messaging system that can communicate with different applications as well as the ability to
control the status of their processes. In addition, middleware adds intelligence in order to map
data between the individual applications and the overall process (see Integration Servers
above).

Interactions with Other Domains
The middleware domain is mostly interdependent on the principles, standards, best practices and
product selections of the Application Development Domain and the Data Management / Data
Warehouse Domain. In addition, there are some interdependencies with the Network, Platform
and Collaboration / Directory Services domains.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 17 of 27

Middleware Domain Principles

General Domain Principles
The general domain principles are based on the Conceptual Architecture Principles agreed to by
the State of Connecticut. These general domain principles serve as a starting point for the
evaluation, selection, acquisition, deployment and management of middleware technologies.

Principle 1. Consistency with other architectural principles.

Definition
The principles for decision making within this domain must also be filtered through these
“standard domain” principles, in addition to the conceptual architecture principles

Rationale
As an “integration domain”, this domain must interact with each of the principles across
domain intersection points as well as support the over-arching conceptual architecture
principles.

Principle 2. Use middleware to support logical partitioning and boundaries.

Definition
Messaging Oriented and Object Request Broker middleware technologies will be used to
develop and maintain the logical partitioning of applications and databases within N-Tier
architectures.

Rationale
Messaging Oriented and Object Request Broker middleware are the preferred methods to
allow applications to be partitioned into discrete parts (objects) and distributed across
multiple platforms. This is direct support of conceptual architectural principles 15 and
16.

Implications
- Requires a change in how applications are designed and built.
- Requires high degree of programming discipline to achieve real benefits.

Principle 3. Use mainstream technologies based on industry standards.

Definition
Middleware products and solutions will use industry-proven, mainstream technologies
with priority given to products adhering to industry standards and open architecture. We
will choose standards that are open, pervasive and non-proprietary, whenever possible.

Rationale
Industry standard protocols and interfaces minimize the dependence between application
and platform infrastructure, and simplify the support of the distributed environment.
Choosing proprietary systems, in lieu of open, may come at a higher cost to transfer to an
open standard, or different standard, later. Using mainstream, standards based solutions

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 18 of 27

helps to assure adequate numbers of external implementers, training sources and
technical support options.

Implications
- Need to have a mechanism to accommodate innovation from smaller, non-mainstream

vendors.
- May mean replacement of current implementations sooner in their life cycle to achieve

greater uniformity in deployment.

Principle 4. Use scalable middleware components and products.

Definition
The underlying middleware technology infrastructure and products must be scalable in
size, capacity, and functionality to meet changing business and technical requirements.

Rationale
Use of scalable components and products encourages the re-use of those components and
products. This reduces the overall cost of ownership.

Implications
- May increase the initial costs of development and deployment.
- Scalability must be reviewed for both upward and downward capability.

Principle 5. Minimize middleware configurations.

Definition
Middleware components and implementation will consist of a small number of
standardized configurations that are designed for cross platform deployment and
integration.

Rational
Reducing uniqueness in product selection and standardization reduces support and
maintenance costs, and simplifies training and skills transfer. This is the most efficient
approach to enterprise-wide middleware configuration and maintenance.

Implications
- May have to sub-optimize solutions in some business situations.
- Need to manage a process of regular replacement of middleware components to ensure the

retirement of Not Supported and unique configurations.

Component Specific Principles
The component specific principles are, in essence, the “mandatory” guidelines to be followed by
agencies or consultants when choosing or deploying middleware solutions or applications.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 19 of 27

Principle 6. Use MOM and ORB middleware to reduce integration complexity.

Definition
Message Oriented Middleware (MOM) and Object Request Broker (ORB) middleware
technologies will be the preferred method of reducing integration complexity when
designing communication between the tiers of distributed applications, and between
applications running on the same or different platforms.

Rationale
N-tier architecture is the preferred means of distributing applications (refer to Conceptual
Architecture Principles). The tiers of a distributed application often run on different
platforms (client, mid-tier application server, database server) and must be able to
communicate. The use of MOM and ORB middleware helps to standardize the solutions
to heterogeneous communication requirements thus reducing application complexity and
total cost of ownership.

Implications
- Use of middleware for communication between application tiers and platforms may

increase up-front development and acquisition costs.
- Requires a wider (possibly enterprise wide) focus when designing and deploying

applications.
- Middleware components will have to designed, acquired, developed, or enhanced such that

data and processes can be shared and integrated;

Principle 7. Use MOM when connecting to legacy systems.

Definition
Message Oriented Middleware should be the preferred method for “wrapping” legacy
applications to provide connectivity between legacy systems and client/server or Internet
applications. The legacy applications can be running on mainframes (or equivalents),
older mid-range platforms.

Rationale
Message-oriented middleware is more appropriate to handle application to application
communication when the target application is running on the mainframe. . MOM based
solutions promote loosely coupled, highly granular solutions. This approach also yields
greater flexibility and adaptability.

Implications
- Existing solutions such as “screen scraping” with single function products, or terminal

emulation become “Not Supported” or transitional.
- The strategies for application integration will need to be fully evaluated against the current

and future needs of the organization
- Advanced approaches such as legacy wrapping and message brokers require more effort to

produce results than does screen scraping or using propriety database interface mechanisms.
- Places greater dependence on network or server based security and authorization

mechanisms.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 20 of 27

Principle 8. Use database middleware and TPM middleware.

Definition
A middleware layer will be used to connect the business logic tier to the data access tier
(or back-end databases). This layer can be the database access components or transaction
processing monitor (TPM) components.

Rationale
Using a database middleware layer buffers the application from platform dependent
interfaces and SQL statements. Use of database middleware supports the adaptability of
the systems architecture, and it supports the flexibility and scalability of applications
using back-end databases.

Implications
- The facilities provided by transaction monitors will have to be qualified against the

application requirements to determine if such an approach is warranted.
- Investment in this technology requires systems management expertise to configure and

monitor usage.
- Proprietary database middleware should be implemented in a manner designed to reduce

product dependencies.

Principle 9. Use asynchronous communications.

Definition
Asynchronous messaging (MOM, ORBs etc.) products and configurations should be used
when ever possible. Synchronous communication will be used if appropriate in the
context of the applications; even then, preference will be given to asynchronous
communication run in pseudo-synchronous mode.

Rationale
Asynchronous communication offers more flexibility than synchronous communication.
Asynchronous messaging allows the downstream process to decide on an appropriate
processing strategy to optimize its throughput and/or respond to different priority
requests. This promotes increased performance, flexibility and scalability of the
application.

Implications
- Requires changes in the application developer’s “mind-set”.

Principle 10. Use MOM when providing connectivity for remote users.

Definition
Message-oriented middleware is appropriate when remote processes need to post to post
transactions on central servers after connecting via dial up facilities or other bandwidth
limited communication links.

Rationale
The transactions can be queued and asynchronously processed by a target application.
This use of MOM takes advantage of asynchronous processing and guaranteed delivery

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 21 of 27

capabilities. In addition, message queuing allows messages to be stored by the
middleware and acted upon when the receiving application chooses to.

Implications
- Requires that security be a service that can be used by middleware components.

Principle 11. Consistency In Naming Conventions

Definition
Middleware components and objects will utilize a consistent naming convention and
schema.

Rationale
Consistency in naming conventions and schema will facilitate use and re-use of
components, thus increasing productivity and uniformity.

Implications
- Achieving consistency in naming conventions and schema will require considerable

planning, and collaboration between business units. This is not easy to achieve.
- There are considerable dependencies on the activities in the network and

collaborative/directory for achieving consistency in naming.

Principle 12. Reuse Security and Access Control Components.

Definition
Middleware components will not duplicate identification, authorization or access controls
already provided by common or shared security or access control mechanisms or servers.

Rationale
Reusing the common security and access control mechanisms avoids inconsistencies and
redundant work needed to provide and maintain those mechanisms. This principle was
called out explicitly to denote the importance of the interaction between this domain and
the Network and Collaborative/Directory domains. This principle is consistent with the
intent of the principles in both those domains.

Implications
- Middleware components act as “conduits” for security and access control information.

Authentication and authorization are a function of other network or infrastructure services.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 22 of 27

Best Practices Principles
The “best practices” principles are intended to ensure that the State achieves a high degree of
return on its investments in middleware technology.

Principle 13. Availability of training and technical support.

Definition
Training and technical support must be available for all middleware tools and software
selected. A program of regular training will be provided to developers and designers in
the effective use of middleware tools, software and components. In addition, technical
support must be made available either through internal resources, or through
“outsourcing”, or through both.

Rationale
The correct and effective implementation of middleware components requires
knowledgeable personnel. A lack of adequate technical support often leads to failed
projects or an inability to provide timely problem resolution.

Implications
- This training will be targeted to those who need such training
- The appropriate timing for training will have to be factored into the development of projects

and systems.
- Requirements for technical support must be included in project definitions and in

procurements when necessary.

Principle 14. Document object functionality and public interfaces.

Definition
When using object oriented middleware, developers will document public interfaces and
object functionality. This is also applicable to the components of message oriented
middle implementations.

Rationale
The documentation of public interfaces and object functionality will facilitate sharing of
components across applications and the reuse of components.

Implications
- Will need to use the facilities of the language or tool to automate this activity.
- Developers will need to provide example code or applets as part of the documentation.

Standards
The purpose of an EWTA is to create a business-driven blueprint for the application of
technology toward solving business problems. Effective architectures are prescriptive. The
domain technical architecture must guide and direct infrastructure and development
engineering decisions. Standards are an important vehicle for providing this guidance and play
an important role in enabling easy interchange of components from multiple vendors. The

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 23 of 27

primary value, offered by IT industry standards, is to enable integration of systems and
applications both within and between enterprises.

There are two types of standards that are addressed in this paper:

• Technical standards, to which products or implementations must comply with, or conform to,
and
• Product Standards, specific vendor offerings that the State has selected from among the
products that comply with, or conform to, the technical standards.

Life Cycle
Standards, whether technical or product have a life cycle which encompasses four major
categories:

Obsolete Standards
It is highly likely that these standards or products, while still in use, will not be supported by
the vendor (industry, manufacturer, etc.) in the future. Some products and standards have
already reached the non-supported state. Plans should be developed by the agencies or the
State to rapidly phase out and replace them with strategic standards or products. No
development should be undertaken using these standards or products by either the agencies or
the State.

Transitional Standards
These are standards or products in which an agency or the State has a substantial investment or
deployment. These standards and products are currently supported by DOIT, the agencies, or
the vendor (industry, manufacturer, etc.). However, agencies should undertake development
using these standards or products only if there are no suitable alternatives that are categorized
as strategic. Plans should be developed by the agencies or the State to move from transitional
to strategic standards or products as soon as practical. In addition, the State should not use
these standards or products for development.
Note: many older versions of strategic standards or products fall into this category, even if not
specifically listed in a domain architecture document.

Strategic Standards
These are the standards and products selected by the state for development or acquisition, and
for replacement of obsolete or transitional standards or products. (Strategic means a three to
four year planning horizon.) When more than one similar strategic standard or product is
specified for a technology category, there may be a preference for use in statewide or multi-
agency development. These preferred standards and products are indicated where appropriate.
Note: some strategic products may be in “pilot testing” evaluation to determine implementation
issues and guidelines. Pilot testing must be successfully completed prior to full deployment by
the agencies or the State.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 24 of 27

Research / Emerging Standards
This category represents proposed strategic standards and products that are in advanced stages
of development and that should be evaluated by the State. The some of these standards or
products may already be undergoing “hands-on” evaluation. Others will need to be tracked and
evaluated over the next 6 to 18 months.

Technical Standards
The technical standards chosen by the domain team were evaluated as:

• to their general compliance or non-compliance with the enterprise and domain architectures
• the relationship to existing standards here in the State of Connecticut, and
• to general technology directions. Preferences were given to standards that are sponsored by
standards bodies, followed by standards enjoying wide market support (de facto) . Least
preference was given to proprietary standards.

The following standards apply to interfaces and transport mechanisms.
Table 1 Middleware Standards Selection Matrix below summarizes the technical middleware
architecture as the State of Connecticut moves towards its future environment

Current and Strategic Standards
Standard 1: Microsoft's ODBC – database access API

Standard 2: Sun's JDBC – database access API.

Standard 3: IBM MQSeries Application Messaging Interface (AMI) – adopted by the
Open Applications Group.

Standard 4: Microsoft Message Queue (MSMQ) –interface API.

Standard 5: EDI (Electronic Data Interchange) – cross platform business data encoding
and formatting, and interchange protocol.

Standard 6: XML (Extensible Markup Language) – cross platform data encoding and
formatting.

Emerging Standards
Emerging 1: SOAP (Simple Open Access Protocol) – for invoking distributed system

services or making remote procedure calls.

Emerging 2: UDDI (Universal Discovery Description And Integration) – specifications
for publishing and discover information about web services.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 25 of 27

The following standards apply to Object Based middleware.

Current or Strategic Standards
Standard 7: CORBA's Interface Definition Language (IDL) for defining public

interfaces, and Transaction Services (TS) interface definition.

Standard 8: OMG Object Transaction Service (OTS) 1.1 –interfaces and protocol
specifications for CORBA based transaction services.

Standard 9: RMI (Remote Method Invocation) – enables one Java application to access
the objects and methods of another Java application.

Standard 10: RMI over IIOP (Remote Method Invocation over Internet Inter-ORB
Protocol) – enables one Java application to access the objects and methods
of another Java or CORBA program across the Internet.

Standard 11: JTS (Java Transaction Service) –

Standard 12: Sun Microsystems J2EE and EJB – overall architecture for APIs, protocols
and server-side s Java components such as Java Beans or Enterprise Java
Beans (EJBs) encapsulating application logic.

Standard 13: Microsoft DNA/DCOM+ – overall architecture for APIs, protocols and
server-side components using Microsoft’s WIN NT, WIN2K based
operating environments. This standard subsumes OLE DB.

Emerging Standards
Emerging 3: Java Message Service (JMS) API – common API and provider framework

for , asynchronous communication between components in a distributed
computing environment.

Emerging 4: JDOM (Java Document Object Model) – creates a new set of Java classes
and interfaces for manipulating XML documents; it is optimized for Java.

Emerging 5: Microsoft •NET – programming model for creating XML-based Web
Services and core, •NET building block services. (This proprietary
environment is due out in the 2002 time frame.)

Middleware Product Standards
The domain team selected product standards on the basis of 4 criteria:

1. the fit with Conceptual Architectural Principles,

2. the fit with the Requirements for Technical Architecture,

3. the fit with the domain specific principles identified above, and

4. an analysis of the current trends in technology and the market place.

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 26 of 27

Table 2 Middleware Product Selection Matrix below summarizes the product direction as the
State of Connecticut moves towards its future environment.

Table 1 Middleware Standards Selection Matrix

Status Category

Standard
 Existing or Proposed

Obsolete Transitional Strategic Research

Interface / Transport
ODBC ✔
JBDC ✔
OLE ✔
OLE DB ✔
MSMQ API ✔
AMI (IBM) ✔
OMG/CORBA ✔
SOAP ✔
XML ✔
EDI ✔
UDDI ✔

Object Oriented
IDL (OMG) ✔
CORBA/CCM ✔
OTS1.1 (OMG) ✔
RMI (Sun) ✔
RMI over IIOP (Sun) ✔
JTS ✔
EJB ✔
J2EE ✔
JMS API (J2EE 1.3) ✔
JDOM ✔
DNA/DCOM+ (Microsoft) ✔
.NET (Microsoft) ✔

Middleware Domain Technical Architecture Ver 1.16 9/15/2003

Middleware Architecture 05-21-02 ver 2.0.doc Page 27 of 27

Table 2 Middleware Product Selection Matrix

Product
 Existing or Proposed

Obsolete Transitional Strategic Research

TP Monitors
IBM TX Series (CICS) ✔

Microsoft MTS ✔

JTS (SUN) ✔

Terminal Emulation
Screen Scappers ✔

IBM Host on Demand ✔

IBM WebSphere Host
Publisher

✔

IBM DB2 Connect ✓

Messaging
IBM's MQSeries
[changed]

✔
preferred

JMS (SUN) ✔
preferred

Microsoft's MSMQ ✔

Application Integration
Oracle 9iAS Application
Server [NEW]

✔
preferred

IBM WebSphere ✔
preferred

IBM MQSI ✔

.NET (Microsoft) ✔

DBMS Middleware
Oracle *Net (*Net) ✔

	September 15, 2002
	Version 2.0
	History of Changes
	
	
	
	
	
	
	Modification

	Technical Architecture for the Middleware Domain�Middleware Technical Architecture 1.0. doc

	Mission Statement
	Introduction and Background
	Growth in Middleware
	General Requirements for Middleware
	Benefits of Using Middleware
	Adaptability
	Flexibility
	Reduced Development Effort
	Reduced Integration Effort
	Increased Return on Investment

	Components
	XML and SOAP
	XML Characteristics
	XML is extensible
	XML uses structural representation of data
	XML separates data from the presentation and the process

	SOAP Characteristics

	Messaging-Oriented Middleware (MOM)
	Transaction Processing Monitors (TPM)
	TPM Services
	Transaction Integrity
	Two-Phase Commit
	Failure Recovery
	Load Balancing

	Object Oriented TPM
	Microsoft Transaction Server
	Java Transaction Service

	Object Request Brokers (ORBs)
	CORBA
	DCOM/DCOM+/DNA
	J2EE and EJB
	RMI

	Database Middleware
	Client to Database Management Server
	Oracle

	Client to Gateway Server
	Application Programming Interfaces (APIs)
	Industry Standard APIs

	Application/Integration Servers
	Application Servers
	Integration Servers

	Workflow Support

	Interactions with Other Domains
	Middleware Domain Principles
	General Domain Principles
	
	Definition
	Rationale
	Definition
	Rationale
	Implications
	Definition
	Rationale
	Implications
	Definition
	Rationale
	Implications
	Definition
	Rational
	Implications

	Component Specific Principles
	
	Definition
	Rationale
	Implications
	Definition
	Rationale
	Implications
	Definition
	Rationale
	Implications
	Definition
	Rationale
	Implications
	Definition
	Rationale
	Implications
	Definition
	Rationale
	Implications
	Definition
	Rationale
	Implications

	Best Practices Principles
	
	Definition
	Rationale
	Implications
	Definition
	Rationale
	Implications

	Standards
	Life Cycle
	Obsolete Standards
	Transitional Standards
	Strategic Standards
	Research / Emerging Standards

	Technical Standards
	The following standards apply to interfaces and transport mechanisms.
	Current and Strategic Standards
	Emerging Standards

	The following standards apply to Object Based middleware.
	Current or Strategic Standards
	Emerging Standards

	Middleware Product Standards
	
	
	
	
	
	
	Obsolete

